Реферат по биологии на тему:




Сторінка1/3
Дата конвертації14.04.2016
Розмір0.58 Mb.
  1   2   3
Министерство образования и науки РФ

Республика Татарстан

Зеленодольский муниципальный район

Нижнеураспугинская средняя общеобразовательная школа


РЕФЕРАТ
по биологии

на тему: «Вирусы»

 

 



Выполнил:

ученик 10 класса


Халиуллин Инсаф Камилевич

Руководитель:

 Халиуллина Альфия Абдулловна

учитель биологии
Нижние Ураспуги

2011


Содержание
Введение

Ι. Гипотезы происхождения вирусов.

ΙΙ. История открытия вирусов.

а). Первое знакомство;

б) Свойства

в). Поведение

г) Составные части вируса

ΙΙΙ. Заповеди вирусов.

ΙV. Как устроены вирусы?

V. Эволюционное происхождение вирусов

VΙ. Механизм инфицирования

VΙΙ. Классификация вирусов.

VΙΙΙ. Роль вирусов в жизни человека. Способы передачи вирусных заболеваний.

ΙX. Список черных дел вирусов:

а). Грипп;

б). Оспа;

в). Полиомиелит;

г). Бешенство;

д) Энцефалит

е). Вирусный гепатит;

ж). Опухолеродные вирусы;

з). СПИД.

X. Особенности эволюции вирусов на современном этапе.

Заключение.

Список используемой литературы.


Введение.

Когда-то, миллионы лет назад,

На нашей замечательной планете

Возникла жизнь, и начался парад

Невиданных существ на этом свете.

Бактерии, простейшие, грибы,

Не счесть червей, и так от века к веку

Жизнь становилась гуще и сложней

И, наконец, дошла до человека.

Все хорошо! Но, видимо, Природа

Иль просчиталась где, иль что недоучла,

Но в этой распрекрасной бочке меда

И ложку дегтя нам преподнесла!

То ль существа, а может, вещества—

Об этом долгий спор не утихает,

Но вирусы — и все об этом знают —

Среди других живут и процветают—

Печальная реальность такова!

Грозит нам СПИД — себя как уберечь?!

И птичий грипп откуда-то вдруг взялся!

Как сделать, чтобы затупился меч,

А щит непробиваемым остался!?

Сказочное понятие «царство» прижилось в науке. Есть царство бактерий, грибов, растений, животных и царство вирусов. Представители вирусов не любят жить в мире ни друг с другом, ни с окружающими. Вирусы живут пока сражаются и погибают от бездействия. Они очень прихотливы к пище, живут «взаймы» за счёт клеток животных, растений и даже бактерий. Вирусы приносят в основном вред и очень редко пользу, если можно так выразится, пользу через вред.

Царство вирусов открыто относительно недавно: 100лет – это детский возраст по сравнению с математикой, 100лет – много по сравнению с генной инженерией. У науки нет возраста: наука, подобно людям, имеет юность, наука никогда не бывает старой.

В 1892 году, русский ученый Д. И. Ивановский описал необычные свойства возбудителей болезни табака – (табачной мозаики), который проходил через бактериальные фильтры.

Через несколько лет Ф.Леффлер и П.Фрош обнаружили, что возбудитель ящура (болезни домашнего скота) также проходят, через бактериальные фильтры. А в 1917 году Ф.д’Эррель открыл бактериофаг – вирус, поражающий бактерии. Так были открыты вирусы растений, животных и микроорганизмов.

Эти три события положили начало новой науке - вирусологии, изучающей неклеточные формы жизни.

Три главных обстоятельства обусловили развитие современной вирусологии, сделав её своеобразной точкой (или почкой) роста медико-биологических наук.

Вирусы возбудители важнейших болезней человека, сельскохозяйственных животных и растений, и значение их всё время возрастает по мере снижения заболеваемости бактериальными, протозойными и грибковыми болезнями.

Ныне признаётся, что вирусы являются возбудителями рака, лейкозов и других злокачественных опухолей. Поэтому решение проблем онкологии теперь зависит от познания природы возбудителей рака и механизмов канцерогенных (опухолеродных) превращений нормальных клеток.

Вирусы – это простейшие формы жизни, обладающими основными её проявлениями, своего рода абстракция жизни, и поэтому служат наиболее благодарным объектом биологии вообще и молекулярной биологии в особенности.

Вирусы вездесущи, их можно найти повсюду, где есть жизнь. Можно даже сказать, что вирусы своеобразные «индикаторы жизни». Они наши постоянные спутники и со дня рождения сопровождают нас всегда и везде. Вред, который они причиняют, очень велик. Достаточно сказать, что «на совести» больше половины всех заболеваний человека, а если вспомнить, что эти мельчайшие из мелких поражают ещё животных, растения и даже своих ближайших родственников по микромиру – бактерий, то станет ясно, сто борьба с вирусами – одна из первоочередных задач. Но чтобы успешно бороться с коварными невидимками, необходимо детально изучить их свойства.

Ученные, анализируя строение вещества, до сих пор не решили: считать вирусы живыми или мертвым. Вирусы, с одной стороны, обладают способностью размножатся, наследственностью и изменчивостью, но с другой стороны, не имеют обмена веществ, и их можно рассматривать, как гигантские молекулы. Вирусы как и другие организмы, характеризуются приспособляемостью к условиям внешней среды. Нужно только не забывать, что для них организм хозяина является средой обитания, поэтому многие условия внешней среды влияют на вирус опосредованно - через организм хозяина. Однако многие факторы внешней среды могут и непосредственно воздействовать на вирусы. Достаточно вспомнить уже названные температурочувствительные мутанты вирусов, которые, например, размножаются при температуре 32-37 С и гибнут при температуре 38-40 С, хотя их хозяева остаются вполне жизнеспособными при этих температурных режимах. В связи с тем, что вирусы являются паразитами, они подчиняются закономерностям и к ним применимы понятия экологии паразитизма. Каждый вирус имеет круг естественных хозяев, иногда очень широкий, как, например, у мелких РНК-геномных фагов: в первом случае поражаются все млекопитающие, во втором - отдельные клоны кишечной палочки. Циркуляция вирусов может быть горизонтальной (распространение среди популяции хозяев) и вертикальной (распространение то родителей потомству) . Таким образом, каждый вирус занимает определенную экологическую нишу в биосфере.

Эдвард Дженнер Луи Пастер


Илья Мечников



Ι. Гипотезы происхождения вирусов.

Были выдвинуты три основные гипотезы.

Согласно первой из них, вирусы являются потомками бактерий или других одноклеточных организмов, претерпевших дегенеративную эволюцию. Согласно второй, вирусы являются потомками древних, доклеточных, форм жизни, перешедших к паразитическому способу существования. Согласно третьей, вирусы являются дериватами клеточных генетических структур, ставших относительно автономными, но сохранившим зависимость от клеток.

Возможность дегенеративной эволюции была неоднократно установлена и доказана, и, пожалуй, наиболее ярким примером ее может служить происхождение некоторых клеточных органелл эукариотов от симбиотических бактерий. В настоящее время, на основании изучения гомологии нуклеиновых кислот, можно считать установленным, что хлоропласты простейших и растений происходят от предков нынешних сине-зеленых бактерий, а митохондрии – от предков пурпурных бактерий. 0бсуждается так же возможность происхождения центриолей от прокариотических симбионтов. Поэтому такая возможность не исключена и для происхождения вирусов, особенно таких крупных, сложных и автономных, каким является вирус оспы.

Все же мир вирусов слишком разнообразен, чтобы признать возможность столь глубокой дегенеративной эволюции для большинства его представителей, от вирусов оспы, герпеса и иридовирусов до аденосателлитов, от реовирусов до сателлитов вируса некроза табака или РНК-содержащего дельта-вируса — сателлита вируса гепатита В, не говоря уж о таких автономных генетических структурах, как плазмиды или вироиды. Разнообразие генетического материала у вирусов является одним из аргументов в пользу происхождения вирусов от доклеточных форм. Действительно, генетический материал вирусов «исчерпывает» все его возможные формы: одно- и двунитевые РНК и ДНК, их линейные, циркулярные и фрагментарные виды. Природа как бы испробовала на вирусах все возможные варианты генетического материала, прежде чем окончательно остановила свой выбор на канонических его формах —двунитевой ДНК как хранителе генетической информации и однонитевой РНК как ее передатчике. И все же разнообразие генетического материала у вирусов скорее свидетельствует о полифилетическом происхождении вирусов, нежели о сохранении предковых доклеточных форм, геном которых эволюционировал по маловероятному пути от РНК к ДНК, от однонитевых форм к двунитевым и т. п.

Третья гипотеза 20—30 лет казалась маловероятной и даже получила ироническое название гипотезы взбесившихся генов. Однако накопленные факты дают все новые и новые аргументы в пользу этой гипотезы. Ряд этих фактов будет обсужден в специальной части книги. Здесь же отметим, что именно эта гипотеза легко объясняет не только вполне очевидное полифилетическое происхождение вирусов, но и общность столь разнообразных структур, какими являются полноценные и дефектные вирусы, сателлиты и плазмиды . Из этой концепции также вытекает, что образование вирусов не явилось единовременным событием, а происходило многократно и продолжает происходить в настоящее время. Уже в далёкие времена, когда начали формироваться клеточные формы, наряду и вместе с ними сохранились и развивались неклеточные формы, представленные вирусами — автономными, но клеточно-зависимыми генетическими структурами. Ныне существующие вирусы являются продуктами эволюции, как древнейших их предков, так и недавно возникших автономных генетических структур. Вероятно, хвостатые фаги служат примером первых, в то время как R-плазмиды — примером вторых.



ΙΙ. История открытия вирусов.

а) Первое знакомство.

В 80-е годы CIC века на юге России табачные плантации подверглись грозному нашествию. Отмирали верхушки растений, на листьях появлялись светлые пятна, год от года число пораженных полей увеличивалось, а причина заболеваний неизвестна.

Профессора Петербургского университета, всемирно известные А. Н. Бекетов и А. С. Фелинцин послали небольшую экспедицию в Бесарабию и на Украину в надежде разобраться в причинах болезни. В экспедицию входили Д. И. Ивановский и В. В. Половцев.

Д.И. Ивановский русский ученый в 1892 году открыл вирус табачной мозаики.

На поиски возбудителей болезни Ивановский потратил несколько лет. Он собирал факты, делал наблюдения, расспрашивал крестьян о симптомах болезни. И экспериментировал. Он собрал листья с нескольких больных растений. Через 15 дней на этих листьях появились белёсые пятна. Значит, болезнь действительно заразна, и может передаваться от растения к растению. Ивановский последовательно устранял возможных переносчиков болезни – корневую систему растений, семена, цветки, пыльцу… Опыты показали, что дело не в них: болезнетворное начало поражает растения иным путём.

Тогда молодой учёный ставит простой опыт. Он собирает больные листья, измельчает их и закапывает на участках со здоровыми растениями. Через некоторое время растения заболевают. Итак, первая удача – путь от больного растения к здоровому найден. Возбудитель передаётся листьями, попавшими в почву, перезимовывает и весной поражает посевы.

Но о самом возбудителе он так ничего и не узнал. Его опыты показали лишь одно, – нечто заразное содержится в соке. В эти годы ещё несколько учёных в мире бились над опознанием этого «нечто». А. Майер в Голландии предложил, что заразное начало – бактерии.

Однако Ивановский доказал, что Майер ошибся, посчитав носителями болезни бактерии.

Профильтровав заразный сок через тонкопористые фарфоровые фильтры, он осадил на них бактерии. Теперь бактерии удалены… но заразность сока сохранилась.

Проходит шесть лет и Ивановский обнаруживает, что столкнулся с непонятным агентом, вызывающим болезнь: он не размножается на искусственных средах, проникает сквозь самые тонкие поры, погибал при нагревании. Фильтруемый яд! Таким был вывод ученого.

Но яд это – вещество, а возбудитель болезни табака был существом. Он отлично размножался в листьях растений.

В 1898 г. голландец Бейеринк (Beijerink) придумал новое слово вирус (от латинского слова, означающего «яд»), чтобы обозначить этим термином инфекционную природу некоторых профильтрованных растительных жидкостей. Хотя удалось достигнуть значительных успехов в получении высокоочищенных проб вирусов и было установлено, что по химической природе это нуклеопротеины (нуклеиновые кислоты, связанные с белками), сами частицы все еще оставались неуловимыми и загадочными, потому что они были слишком малы, чтобы их можно было увидеть с помощью светового микроскопа. Поэтому-то вирусы и оказались в числе первых биологических структур, которые были исследованы в электронном микроскопе сразу же после его изобретения в 30-е годы нашего столетия.

Один из выдающихся советских фитовирусологов В. Л.Рыжков писал: "Заслуги Д. И. Ивановского не только в том, что он открыл совершенно новый вид заболеваний, но и в том, что он дал методы их изучения". В 1935 году У. Стенли из сока табака, пораженного мозаичной болезнью, выделил в кристаллическом виде ВТМ (вирус табачной мозаики) .


За это в 1946 году ему была вручена Нобелевская премия. В 1958 году Р. Франклин и К. Холм, исследуя строение ВТМ, открыли, что ВТМ является полым цилиндрическим образованием. В 1960 году Гордон и Смит установили, что некоторые растения заражаются свободной нуклеиновой кислотой ВТМ, а не целой частицей нуклеотида.
В этом же году крупный советский ученый Л. А. Зильбер сформулировал основные положения вирусогенетической теории. В 1962 году американские ученые А. Зигель, М. Цейтлин и О. И. Зегал экспериментально получили вариант ВТМ, не обладающий белковой оболочкой, выяснили, что у деффектных ВТМ частиц белки располагаются беспорядочно, и нуклеиновая кислота ведет себя, как полноценный вирус. В 1968 году Р. Шепард обнаружил ДНК-содержащий вирус.
Одним из крупнейших открытий в вирусологии является открытие американских ученых Д. Балтимора и Н. Темина, которые нашли в структуре ретровируса ген, кодирующий фермент - обратную транскриптазу. Назначение этого фермента - катализировать синтез молекул ДНК на матрице молекулы РНК. Заболевания растений, животных и человека, вирусная природа которых в настоящее время установлена, в течении многих столетий наносили ущерб хозяйству и вред здоровью человека.
Хотя многие из этих болезней были описаны, но попытки установить их причину и обнаружить возбудитель оставались безуспешными. В результате наблюдений Д. И. Ивановский и В. В.
Половцев впервые высказали предположение, что болезнь табака, описанная в 1886 году A. D. Mayer в Голландии под название мозаичной, представляет собой не одно, а два совершенно различных заболевания одного и того же растения: одно из них - рябуха, возбудителем которого является грибок, а другое неизвестного происхождения. Исследование мозаичной болезни табака Д. И.
Ивановский продолжает в Никитинском, подчеркивая, что возбудитель мозаичной болезни табака не мог быть обнаружен в тканях больных растений с помощью микроскопа и не культивировался на искусственных питательных средах. Д. И. Ивановский писал, что его предположение о живой и организованной природе возбудителя "формировано в целую теорию особого рода инфекционных заболеваний", представителем которых, помимо табачной мозаики, является ящур (использовав тот же метод фильтрации) . Д.
И. Ивановский открыл вирусы - новую форму существования жизни. Своими исследованиями он заложил основы ряда научных направлений вирусологии: изучение природы вируса, цитопатологических вирусных инфекций, фильтрующихся форм микроорганизмов, хронического и латентного вирусоносительства. Один из выдающихся советских фитовирусологов В. Л.
Рыжков писал: "Заслуги Д. И. Ивановского не только в том, что он открыл совершенно новый вид заболеваний, но и в том, что он дал методы их изучения". В 1935 году У. Стенли из сока табака, пораженного мозаичной болезнью, выделил в кристаллическом виде ВТМ (вирус табачной мозаики) .
За это в 1946 году ему была вручена Нобелевская премия. В 1958 году Р. Франклин и К. Холм, исследуя строение ВТМ, открыли, что ВТМ является полым цилиндрическим образованием. В 1960 году Гордон и Смит установили, что некоторые растения заражаются свободной нуклеиновой кислотой ВТМ, а не целой частицей нуклеотида.
В этом же году крупный советский ученый Л. А. Зильбер сформулировал основные положения вирусогенетической теории. В 1962 году американские ученые А. Зигель, М. Цейтлин и О. И. Зегал экспериментально получили вариант ВТМ, необладающий белковой оболочкой, выяснили, что у деффектных ВТМ частиц белки располагаются беспорядочно, и нуклеиновая кислота ведет себя, как полноценный вирус.
В 1968 году Р. Шепард обнаружил ДНК-содержащий вирус. Одним из крупнейших открытий в вирусологии является открытие американских ученых Д. Балтимора и Н. Темина, которые нашли в структуре ретровируса ген, кодирующий фермент - обратную транскриптазу.
Назначение этого фермента - катализировать синтез молекул ДНК на матрице молекулы РНК.  

1901 году было обнаружено первое вирусное заболевание человека — жёлтая лихорадка. Это открытие было сделано американским военным хирургом У. Ридом и его коллегами.

В 1911 году Фрэнсис Раус доказал вирусную природу рака — саркомы Рауса (лишь в 1966 году, спустя 55 лет, ему была вручена за это открытие Нобелевская премия по физиологии и медицине).

В последующие годы изучение вирусов сыграло важнейшую роль в развитии эпидемиологии, иммунологии, молекулярной генетики и других разделов биологии. Так, эксперимент Херши-Чейз стал решающим доказательством роли ДНК в передаче наследственных свойств. В разные годы еще как минимум шесть Нобелевских премий по физиологии и медицине и три Нобелевских премии по химии были вручены за исследования, непосредственно связанные с изучением вирусов.

В 2002 году в Нью-Йоркском университете был создан первый синтетический вирус (вирус полиомиелита).[1]

б) Свойства

Вирусы – это мельчайшие живые организмы, размеры которых варьируют в пределах примерно от 20 до 300 мм; в среднем они раз в пятьдесят меньше бактерий. Как уже говорилось, вирусы нельзя увидеть с помощью светового микроскопа (так как их размеры меньше полудлины световой волны), и они проходят через фильтры, которые задерживают бактериальные клетки.Часто задают вопрос: «А являются ли вирусы живыми?» Если живой считать такую структуру, которая обладает генетическим материалом (ДНК или


РНК) и которая способна воспроизводить себя, то можно сказать, что вирусы живые. Если же живой считать структуру, обладающую клеточным строением, то ответ должен быть отрицательным. Следует также отметить, что вирусы не способны воспроизводить себя вне клетки-хозяина. Они находятся на самой границе между живым и неживым. И это лишний раз напоминает нам, что существует непрерывный спектр все возрастающей сложности, который начинается с простых молекул и кончается сложнейшими замкнутыми системами клеток.
в) Поведение

Вирусы могут воспроизводить себя только внутри живой клетки, поэтому они являются облигатными паразитами. Обычно они вызывают явные признаки заболевания. Попав внутрь клетки-хозяина, они «выключают» (инактивируют) хозяйскую ДНК и, используя свою собственную ДНК или РНК, дают клетке команду синтезировать новые копии вируса. Вирусы передаются из клетки в клетку в виде инертных частиц.



г) Составные части вируса

В 1932 году молодому американскому биохимику Вендиллу Стенли тогдашний директор Рокфеллеровского института в Нью-Йорке Симон Флекенер предложил заняться вирусами. Стенли начал с того, что собрал тонну листьев табака, пораженных вирусом табачной мозаики, и решил получить сок из всей этой горы. Он отжал бутыль сока и начал исследовать сок доступными ему химическими методами. Разные фракции сока он подвергал воздействию всевозможных реактивов, надеясь получить чистый вирусный белок (Стенли был убеждён, что вирус это белок). Ему долгое время не удавалось избавиться от белков растительных клеток. Однажды, перепробовав разные методы подкисления и высаливания, Стенли получил почти чистую фракцию белка, отличавшегося по своему составу от белков растительных клеток. Учёный понял, что перед ним то, чего он так упорно добивался. Стенли выделил необыкновенный белок, растворил его в воде и поставил раствор в холодильник. Наутро в колбе вместо прозрачной жидкости лежали красивые шелковистые игольчатые кристаллы. Из тонны листьев Стенли добыл столовую ложку таких кристаллов. Затем Стенли отсыпал немного кристалликов, растворил их в воде, смочил этой водой марлю и ею натёр листья здоровых растений. Сок растений подвергся целому комплексу химических воздействий. После такой «массированной обработки» вирусы, скорее всего, должны были погибнуть.

Натёртые листья заболели, а через пару недель характерная мозаика белых пятен покрыла все растения, затем повторил эту операцию опять, а после четвёртого или пятого «переливания» вируса отжал сок из листьев, подверг его той же химической обработки и снова получил точно такие же кристаллы. Странные свойства вируса пополнились ещё одним – способностью кристаллизироваться.

Эффект кристаллизации был настолько ошеломляющим, что Стенли надолго отказался от мысли, что вирус - это существо. Так как все ферменты (катализаторы реакции в живых организмах) – белки, и количество многих ферментов также увеличивается по мере развития организма, и они могут кристаллизироваться, Стенли заключил, что вирусы – чистые белки, скорее ферменты.Вскоре учёные убедились, что кристаллизировать можно не только вирус табачной мозаики, но и ряд других вирусов.

Вендел Стенли в 1946 году был удостоен Нобелевской премии.

Спустя пять лет английские биохимики Ф. Боуден и Н. Пири нашли ошибку в определении Стенли. 94% содержимого вируса табачной мозаики состоял из белка, а 6% представляло собой нуклеиновую кислоту. Вирус был на самом деле не белком, а нуклеопротеином – соединением белка и нуклеиновой кислоты.

Как только биологам стали доступны электронные микроскопы, учёные установили, что кристаллы вирусов состоят из тесно прижатых друг к другу нескольких сотен миллиардов частиц. В одном кристалле вируса полиомиелита столько частиц, что ими можно заразить не по одному разу всех жителей Земли. Когда же удалось рассмотреть в электронном микроскопе отдельные вирусные частицы, то оказалось что они бывают разной формы – и шарообразные, и палочковидные, и в виде сандвича, и в форме булавы, но всегда наружная оболочка вирусов состоит из белка, а внутреннее содержимое представлено нуклеиновой кислотой.

ΙΙΙ. Заповеди вирусов.

Вирусы проходят через фильтры, задерживающие бактерии. Им дали название – «фильтрующиеся вирусы», но оказалось, что через бактериальные фильтры (менее 0,5 микрометра) проходят не только вирусы, но и бактерии L-формы (их изучал академик В. Д. Тимаков со своими учениками). Затем был открыт целый класс наиболее мелких бактерий – микоплазмы. Так «фильтрующиеся» вирусы стали просто вирусы.

Вирусы обладают определенной наследственностью, воспроизводя себе подобных. Наследственные признаки вирусов можно учитывать по сектору поражаемых хозяев и симптомам вызываемых заболеваний, а также по специфичности иммунных реакций естественных хозяев или искусственных иммунизируемых экспериментальных животных. Сумма этих признаков позволяет четко определить наследственные свойства любого вируса, и даже больше - его разновидностей, имеющих четкие генетические маркеры, например: нейтронность некоторых вирусов гриппа, сниженную патогенность у вакциональных вирусов и т.п. Изменчивость является другой стороной наследственности, и в этом отношении вирусы подобны всем другим организмам, населяющим нашу планету.
При этом у вирусов можно наблюдать как генетическую изменчивость, связанную с изменением наследственного вещества, так и фенотипическую изменчивость, связанную с проявлением одного и того же генотипа в разных условиях. Примером первого типа изменчивости являются мутанты одного и того же вируса, в частности температурочувствительные мутанты. Примером второго типа изменчивости служит разный тип поражений, вызываемых одним и тем же вирусом у различных животных, растений и бактерий. Все вирусы по своей природе - паразиты. Они способны воспроизводить себя, но только внутри живых клеток.
Невозможно выращивать вирусы на искусственных средах. Это свойство вирусов отражает степень паразитизма. Они не растут даже на самых сложных по составу питательных средах и развиваются только в живых организмах, что считалось основным критерием отличия развития вирусов от других микроорганизмов. Но были открыты опять же бактерии, не развивающиеся на питательных средах. Это риккетсии и хламидии. Риккетсии вызывают сыпной тиф, пятнистую лихорадку и другие. Хламидии – возбудители трахомы, пневмонии (воспаления лёгких).

Таким образом, живая клетка - единственная возможная среда обитания для вирусов, риккетсий, хламидий и некоторых простейших. Но сейчас выяснилось, что вирусы для своего размножения не нуждаются в целой клетки, им достаточно её одной определённой части.


ΙV. Как устроены вирусы?

350px-virion

Примеры структур икосаэдрических вирионов.


А. Вирус, не имеющий липидной оболочки (например, пикорнавирус).
B. Оболочечный вирус (например, герпесвирус).
Цифрами обозначены: (1) капсид, (2) геномная нуклеиновая кислота, (3) капсомер, (4) нуклеокапсид, (5) вирион, (6) липидная оболочка, (7) мембранные белки оболочки.

Сравнивая живое и неживое, необходимо особо остановиться на вирусах, так как они обладают свойствами и того и другого. Что же такое вирусы?

Вирусы настолько малы, что их не видно даже в самый сильный световой микроскоп. Их удалось рассмотреть только после создания электронного микроскопа, разрешающая способность которого в 100 раз больше чем у светового.

Размеры вирусов колеблются от 20 до 300 нм. В среднем они в 50 раз меньше бактерий. Их нельзя увидеть в световой микроскоп, так как их длины меньше длины световой волны.

Вирусные частицы (вирио́ны) представляют собой белковую капсулу — капсид, содержащую геном вируса, представленный одной или несколькими молекулами ДНК или РНК. Капсид построен из капсомеров — белковых комплексов, состоящих, в свою очередь, из протомеров. Нуклеиновая кислота в комплексе с белками обозначается термином нуклеокапсид. Некоторые вирусы имеют также внешнюю липидную оболочку. Размеры различных вирусов колеблются от 20 (парвовирусы) до 500 (мимивирусы) и более нанометров. Вирионы часто имеют правильную геометрическую форму (икосаэдр, цилиндр). Такая структура капсида предусматривает идентичность связей между составляющими её белками, и, следовательно, может быть построена из стандартных белков одного или нескольких видов, что позволяет вирусу экономить место в геноме.

Схематический разрез.


дополнительная

оболочка


каспсомер

сердцевина


Вирусы состоят из различных компонентов:

а) сердцевина - генетический материал (ДНК или РНК). Генетический аппарат вируса несет информацию о нескольких типах белков, которые необходимы для образования нового вируса: ген, кодирующий обратную транскриптазу и другие.

б) белковая оболочка, которую называют капсидом.

Оболочка часто построена из индентичных повторяющихся субъединиц - капсомеров. Капсомеры образуют структуры с высокой степенью симметрии.

в) дополнительная липопротеидная оболочка.

Она образована из плазматической мембраны клетки-хозяина. Она встречается только у сравнительно больших вирусов (грипп, герпес).

В отличие от обычных живых клеток вирусы не употребляют пищи и не вырабатывают энергии. Они не способны размножаются без участия живой клетки. Вирус начинает размножаться лишь после того, как он проникнет в клетку определенного типа. Вирус полиомиелита, например, может жить только в нервных клетках человека или таких высокоорганизованных животных, как обезьяны.

Изучению вирусов, инфицирующих некоторые бактерии в кишечнике человека, показало, что цикл размножения этих вирусов протекает следующим образом: вирусная частица прикрепляется к поверхности клетки, после чего нуклеиновая кислота вируса (ДНК) проникает внутрь клетки, а белковая оболочка остается снаружи. Вирусная нуклеиновая кислота, оказавшись внутри клетки, начинает самовоспроизводиться, используя в качестве строительного материала вещества клетки-хозяина. Затем, опять таки из продуктов обмена клетки, вокруг вирусной нуклеиновой кислоты образуется белковая оболочка: так формируется зрелая вирусная частица. В следствии этого процесса некоторые жизненно важные частицы клетки-хозяина разрушаются, клетка гибнет, ее оболочка лопается, освобождаются вирусные частицы, готовые к заражению других клеток. Вирусы вне клетки представляют собой кристаллы, но при попадании в клетку “оживают”.

Итак, ознакомившись с природой вирусов, посмотрим, насколько они удовлетворяют сформулированным критериям живого. Вирусы не являются клетками и в отличие от живых организмов с клеточной структурой не имеют цитоплазмы. Они не получают энергии за счет потребления пищи. Казалось бы, их нельзя считать живыми организмами. Однако вместе с тем вирусы проявляют свойства живого. Они способны приспосабливаться к окружающей среде путем естественного отбора. Это их свойство обнаружилось при изучении устойчивости вирусов к антибиотикам. Допустим, что больного с вирусной пневмонией лечат каким-то антибиотиком, но вводят его в количестве, недостаточном для разрушения всех вирусных частиц. При этом те вирусные частицы, которые оказались более устойчивыми к антибиотику и их потомство наследует эту устойчивость. Поэтому в дальнейшем этот антибиотик окажется не эффективным, штамма созданного естественным отбором.

Но, пожалуй, главным доказательством того, что вирусы относятся к миру живого, является их способность к мутациям. В 1859 году, но всему земному шару широко распространилась эпидемия азиатского гриппа. Это явилось следствием мутации одного гена в одной вирусной частицы у одного больного в Азии. Мутантная форма оказалась способной преодолеть иммунитет к гриппу, развивающийся у большинства людей в результате перенесенной ранее инфекции. Широко известен и другой случай мутации вирусов, связанный с применением вакцины против полиомиелита. Эта вакцина состоит из живого вируса полиомиелита, ослабленного настолько, что он не вызывает у человека никаких симптомов. Слабая инфекция, которой человек практически не замечает, создает против болезни вирусных штаммов того же типа. В 1962 году было зарегистрировано несколько тяжелых случаев полиомиелита, вызванных, по-видимому, этой вакциной. Вакцинировано было несколько миллионов: в отдельных случаях произошла мутация слабого вирусного штамма, так что он приобрел высокую степень вирулентности. Поскольку мутация свойственна только живым организмам, вирусы следует считать живыми, хотя они просто организованны и не обладают всеми свойствами живого.

Итак, мы перечислили характерные особенности живых организмов, отличающие их от неживой природы, и теперь нам легче представить себе какие объекты изучает биология.

Просто организованные вирусы представляют собой нуклеопротеины, т.е. состоят из нуклеиновой кислоты (ДНК или РНК) и несколько белков, образующих оболочку вокруг нуклеиновой кислоты. Белковая оболочка называется капсидом. Примером таких вирусов является вирус табачной мозаики. Его капсид содержит всего один белок с небольшой молярной массой. Сложно организованные вирусы имеют дополнительную оболочку, белковую или липопротеиновую. Иногда в наружных оболочка сложных вирусов помимо белков содержатся углеводы, например у возбудителей гриппа и герпеса. И их наружная оболочка является фрагментом ядерной или цитоплазматической мембраны клетки-хозяина, из которой вирус выходит во внеклеточную среду. Геном вирусов могут быть представлены, как однониточными, так и двунитчатыми ДНК и РНК. Двунитчатая ДНК встречается у вирусов оспы человека, оспы овец, свиней, аденовирусов человека, двунитчатая РНК служит генетической матрицей у некоторых вирусов насекомых и других животных. Широко распространены вирусы, содержащие однонитчатую РНК.
V. Эволюционное происхождение вирусов

Наиболее правдоподобной и приемлемой является гипотеза о том, что вирусы произошли из «беглой» нуклеиновой кислоты, т.е. нуклеиновой кислоты, которая приобрела способность реплицироваться независимо от той клетки, из которой она возникла, хотя при этом подразумевается, что такая ДНК реплицируется с использованием (паразитическим) структур этой или других клеток. Таким образом, вирусы, должно быть, произошли от клеточных организмов, и их не следует рассматривать как примитивных клеточных организмов.

О том, насколько обычны такие «побеги», судить достаточно трудно, но кажется вполне вероятным, что дальнейшие успехи генетики позволят нам выявить и другие варианты паразитических нуклеиновых кислот.

Число видов вирусов приближается к тысяче. Сходные по строению вирусы одних групп – паразиты ограниченного круга хозяев, другие – поражают виды, филогенетически далёкие друг от друга.

Ограниченный круг хозяев имеют, Т-чётные фаги со сложным строением. Все они паразитируют на бактериях кишечной группы и могут быть признанны узкоспециализированными формами. К ещё более специализированным формам относятся мелкие РНК-содержащие вирусы поражающие более широкий круг хозяев – пресмыкающихся, птиц и млекопитающих, однако, узкая специализация так же очевидна в связи с вертикальной передачей и способностью соединяться с клеточным геномом.

У некоторых вирусов одной и той же группы наблюдается противоположное явление – их хозяева относятся к отдалённым друг от друга филогенетическим группам. Примером могут служить вирусы двуспиральной РНК, морфологически сходные между собой, поражающи человека (реовирусы) и растения (вирусы раневых опухолей). Вирусы группы оспы обнаружены у человека, млекопитающих, птиц, рыб и насекомых. Ещё более выразителен пример РНК-содержащих вирусов, имеющих пулеобразное строение: они поражают человека и животных (бешенство, везикулярный стоматит), насекомых (вирус дрозофилы) и многие виды растений (мозаичные болезни картофеля и злаковых).


. Механизм инфицирования

Условно процесс вирусного инфицирования в масштабах одной клетки можно разбить на несколько взаимоперекрывающихся этапов:



350px-tobacco_mosaic_virus_structure

Палочковидная частица вируса табачной мозаики.


Цифрами обозначены: (1) РНК-геном вируса, (2) капсомер, состоящий всего из одного протомера, (3) зрелый участок капсида.

  • Присоединение к клеточной мембране — так называемая адсорбция. Обычно для того, чтобы вирион адсорбировался на поверхности клетки, она должна иметь в составе своей плазматической мембраны белок (часто гликопротеин) — рецептор, специфичный для данного вируса. Наличие рецептора нередко определяет круг хозяев данного вируса, а также его тканеспецифичность.

350px-hiv_virion

Структура вириона неикосаэдрического оболочечного вируса на примере ВИЧ.


Цифрами обозначены: (1) РНК-геном вируса, (2) нуклеокапсид, (3) капсид, (4) белковый матрикс, подстилающий (5) липидную мембрану, (6) gp120 — гликопротеин, с помощью которого происходит связывание вируса с клеточной мембраной, (7) gp41 — трансмембранный гликопротеин.
Цифрами 8—11 обозначены белки, входящие в состав вириона и необходимые вирусу на ранних стадиях инфекции: (8) — интеграза, (9) — обратная транскриптаза, (10) — Vif, Vpr, Nef и p7, (11) — протеаза.

Проникновение в клетку. На следующем этапе вирусу необходимо доставить внутрь клетки свою генетическую информацию. Некоторые вирусы переносят также собственные белки, необходимые для её реализации (особенно это характерно для вирусов, содержащих негативные РНК). Различные вирусы для проникновения в клетку используют разные стратегии: например, пикорнавирусы впрыскивают свою РНК через плазматическую мембрану, а вирионы ортомиксовирусов захватываются клеткой в ходе эндоцитоза, попадают в кислую среду лизосом, где происходит их окончательное созревание (депротеинизация вирусной частицы), после чего РНК в комплексе с вирусными белками преодолевает лизосомальную мембрану и попадает в цитоплазму. Вирусы также различаются по локализации их репликации, часть вирусов (например, те же пикорнавирусы) размножается в цитоплазме клетки, а часть (например, ортомиксовирусы) в её ядре. Рецепторный механизм проникновения вируса в клетку обеспечивает специфичность инфекционного процесса. Так, вирус гепатита. А. или В. проникает и размножается только в клетках печени, аденовирусы и вирус гриппа - в клетках эпителия слизистой оболочки верхних дыхательных путей, вирус, вызывающий воспаление головного мозга, - в нервных клетках, вирус эпидемического паротита (свинка) – в клетках околоушных слюнных желез и т. д.

Инфекционный процесс начинается, когда проникшие в клетку вирусы начинают размножаться, т. е. происходит редупликация вирусного генома и само сборка капсида. Для осуществления редупликации нуклеиновая кислота должна освободиться от капсида. После синтеза новой молекулы нуклеиновой кислоты она одевается, синтезированными в цитоплазме клетки – вирусными белками – образуется капсид. Накопление вирусных частиц приводит к выходу их из клетки. Для некоторых вирусов это происходит путем «взрыва», в результате чего целостность клетки нарушается и она погибает. Другие вирусы выделяются способом, напоминающим почкование. В этом случае клетки организма могут долго сохранять свою жизнеспособность.



Иной путь проникновения в клетку у вирусов бактерий – бактериофагов. Толстые клеточные стенки не позволяют белку-рецептору вместе с присоединившимся к нему вирусом погружаться в цитоплазму, как это происходит при инфицировании клеток животных. Поэтому бактериофаг вводит полый стержень в клетку и вталкивает через нее ДНК (или РНК), находящуюся в его головке. Геном бактериофага попадает в цитоплазму, а капсид остается снаружи. В цитоплазму бактериальной клетки начинается редупликация генома бактериофага, синтез его белков и формирование капсида. Через определенный промежуток времени бактериальная клетка гибнет, и зрелые фаговые частицы выходят в окружающую среду.

Перепрограммирование клетки. При заражении вирусом в клетке активируются специальные механизмы противовирусной защиты. Заражённые клетки начинают синтезировать сигнальные молекулы — интерфероны, переводящие окружающие здоровые клетки в противовирусное состояние и активирующие системы иммунитета. Повреждения, вызываемые размножением вируса в клетке, могут быть обнаружены системами внутреннего клеточного контроля, и такая клетка должна будет «покончить жизнь самоубийством» в ходе процесса, называемого апоптозом или программируемой клеточной смерти. От способности вируса преодолевать системы противовирусной защиты напрямую зависит его выживание. Неудивительно, что многие вирусы (например, пикорнавирусы, флавивирусы) в ходе эволюции приобрели способность подавлять синтез интерферонов, апоптозную программу и так далее. Кроме подавления противовирусной защиты, вирусы стремятся создать в клетке максимально благоприятные условия для развития своего потомства. Хрестоматийным примером перепрограммирования систем клетки-хозяина является трансляция РНК энтеровирусов (семейство пикорнавирусы). Вирусная протеаза расщепляет клеточный белок eIF4G, необходимый для инициации трансляции подавляющего большинства клеточных мРНК (транслирующихся по так называемому кэп-зависимому механизму). При этом инициация трансляции РНК самого вируса происходит другим способом (IRES-зависимый механизм), для которого вполне достаточно отрезанного фрагмента eIF4G. Таким образом, вирусные РНК приобретают эксклюзивные «права» и не конкурируют за рибосомы с клеточными.

Создание новых вирусных компонентов. Размножение вирусов в самом общем случае предусматривает три процесса — 1) транскрипция вирусного генома — то есть синтез вирусной мРНК, 2) её трансляция, то есть синтез вирусных белков и 3) репликация вирусного генома (в некоторых случаях, когда генетическая информация вируса закодирована в виде РНК геномная РНК одновременно играет роль мРНК, и, следовательно, процесс транскрипции в паразитируемой клетке не происходит за ненадобностью). У многих вирусов существуют системы контроля, обеспечивающие оптимальное расходование биоматериалов клетки-хозяина. Например, когда вирусной мРНК накоплено достаточно, транскрипция вирусного генома подавляется, а репликация напротив — активируется.

Созревание вирионов и выход из клетки. В конце концов, новосинтезированные геномные РНК или ДНК одеваются соответствующими белками и выходят из клетки. Следует сказать, что активно размножающийся вирус не всегда убивает клетку-хозяина. В некоторых случаях (например, ортомиксовирусы) дочерние вирусы отпочковываются от плазматической мембраны, не вызывая её разрыва. Таким образом, клетка может продолжать жить и продуцировать вирус. Потомство одной ничтожной вирусной частицы разрушает клетку. Действуя внутри клетки, вирус подрывает все её жизненные ресурсы: он захватывает места синтеза белков, забирает энергию клетки, накладывает вето на запасные строительные блоки.

Жизнедеятельность бактериальных вирусов.

Спустя 25 лет после открытия вируса, канадский ученый Феликс Д’Эрел, используя метод фильтрации, открыл новую группу вирусов, поражающих бактерии. Они так и были названы бактериофагами (или просто фагами).

Строение бактериальных вирусов.
Головка, содержащая ДНК

Воротничок


Полый стержень

Чехол со спиральной

симметрией

Базальная пластина.

Шипы отростка

Хвостатые нити


Фаг, так называемыйT2 и по форме напоминающий головастика прикрепляется к бактериальной клетке и затем впрыскивает в неё длинную одиночную нить ДНК. Бактериальная клетка содержит собственную ДНК, которая управляет всеми процессами её жизнедеятельности. Но как только в бактериальную клетку внедряется вирусная ДНК, она захватывает власть над «фабриками клетки» и начинает «посылать команды» на синтез составных частей вирусов за счет веществ бактерии. Вещества бактериальной клетки всё больше и больше расходуются на строительство вирусной ДНК и вирусного белка и в конце концов она погибает.

После того как, вирусная ДНК попадает в бактериальную клетку, она становится способной синтезировать целые вирусные частицы. Менее чем через 30 минут оболочка клетки лопается, и сотни образовавшихся в ней вирусов выходят наружу. Каждая из таких вирусных частиц может теперь вновь заразить бактерию, и через некоторое время это приводит к гибели всей популяции бактерий.





VΙΙ. Классификация вирусов.

В таксономии живой природы вирусы выделяются в отдельный таксон Vira, образующий в классификации Systema Naturae 2000 вместе с доменами Bacteria, Archaea и Eukaryota корневой таксон Biota. В течение XX века в систематике выдвигались предложения о создании выделенного таксона для неклеточных форм жизни (Aphanobionta Novak, 1930; надцарство Acytota Jeffrey, 1971; Acellularia), однако такие предложения не были кодифицированы.

Систематику и таксономию вирусов кодифицирует и поддерживает Международный Комитет по Таксономии Вирусов (International Committee on Taxonomy of Viruses, ICTV), поддерживающий также и таксономическую базу The Universal Virus Database ICTVdB.

  1   2   3


База даних захищена авторським правом ©mediku.com.ua 2016
звернутися до адміністрації

    Головна сторінка