Учебное пособие Ростов-на-Дону (075. 8) Ббк 20я73 ктк 100




Сторінка11/36
Дата конвертації18.04.2016
Розмір6.45 Mb.
1   ...   7   8   9   10   11   12   13   14   ...   36

147
нам классической физики, в XX столетии их, этих противоречий, последует еще несколько), скорость света не зависит от скорости движения источника света. Например, согласно классической механике, скорость света от звезды, измеряемая по ходу движения Земли, должна быть 300030 км/с, а всегда получается 300000 км/с. Т. е. «с» плюс или минус «v», все равно получим «с»!

Разрешить эту, на первый взгляд, неразрешимую проблему смог в 1905 году великий немецкий физик Альберт Эйнштейн, создавший для этого специальную теорию относительности (СТО) или так называемую релятивистскую механику, заменившую для быстрых, околосветовых скоростей классическую механику. В основу новой теории движения и пространства-времени Эйнштейном были положены два постулата:



  1. Релятивистский принцип относительности в любых инерциальных системах все физические процессы механические, оптические, электрические и другие протекают одинаково, или, в формулировке русского советского физика Владимира Фока, явления природы не зависят от неускоренного движения.

  2. Принцип постоянства скорости света скорость света в вакууме не зависит от скоростей движения источника и приемника, она одинакова во всех направлениях, во всех инерциальных системах отсчета. Иногда этот принцип интерпретируют как принцип существования предельной скорости распространения (например, В. Фок).

Позднее, в 1908 г., в теорию Эйнштейна внедрилась идея немецкого математика, выходца из России, Германа Минковского о том, что весь наш мир представляет собой четырехмерный пространственно-временной континуум событий. Иначе, такой континуум следует понимать как сплошное четырехмерное пространство-время мировых

148


точек событий, в геометрическом представлении (описании) которого три измерения (размерности) ответственны за пространство и одно измерение (размерность) — за время. При таком выборе описания мировых событий частице, любому объекту соответствует так называемая мировая линия. Точки этой линии определяют координаты частицы во все моменты времени. Так, например, равномерно и прямолинейно движущейся материальной частице соответствует прямая мировая линия. Среди основных следствий СТО можно выделить такие:

а) продольные размеры движущегося тела всегда мень


ше
размеров покоящегося;

б) движущиеся часы идут медленнее покоящихся ча


сов (время замедляется);

в) события, одновременные в одной системе отсчета,


никогда не будут одновременными в какой-либо другой
системе;

г) одновременность понятие относительное (имен


но анализ понятия одновременности привел Эйнштейна к
созданию СТО);

д) масса движущегося тела всегда больше массы поко


ящегося тела.

Новый вид и новую сущность приобретает теорема сложения скоростей V1 и V2; если в ньютоновой механике ее вид был V = V1 + V2, то в эйнштейновой он таков:



Видно, что если подставить в эту формулу самые предельные скорости с, то V будет равно с! Во всех остальных случаях

Таким образом, в этой новой теории пространства и времени утрачивают свою физическую абсолютность: традиционное евклидово (пифагорейское) расстояние, ньютоново время, ньютонова масса, ее импульс, энергия (но законы сохранения этих величин не нарушаются!). Боль-

149

шинство отмеченных физических характеристик объектов оказываются чувствительны к отношению скорости их движения v к скорости света с — отношению v/c, так что все наблюдаемые и регистрируемые новые эффекты, называемые релятивистскими, возникают при приближении этого отношения к 1. Оказалось, что ничто материальное, т. е имеющее массу, не может достичь скорости света! В эйнштейновой релятивистской механике появилась самая знаменитая формула в мире, кстати, высеченная на надгробии Альберту Эйнштейну в Принстоне. Это формула для энергии массы т, известная практически всякому грамотному человеку, а именно, Е = тс2. Это вовсе не энергия движения массы т, поскольку, повторим, никакая масса не может достичь скорости света с, это некая запасенная энергия этой массой, характеризующая ее потенциальные энергетические возможности. При определенных условиях эта энергия вся, без остатка, может превратиться в энергию излучения либо кванта электромагнитного поля Е = hn, либо кванта какого-то другого поля (см. п. 4.4). Такие возможности возникают при реакции аннигиляции любых частиц и античастиц, например, при лобовом столкновении электрона и позитрона.

Рассмотренная эйнштейнова формула энергии парадоксальна (или противоречива) тем, что масса т в ней умножается на квадрат скорости света с, скорости, которой она сама никогда достичь не может! Поскольку скорость света есть предельная, универсальная скорость в мировом пространстве (во Вселенной), то очевидно, что и сама масса есть проявление (следствие) универсальных свойств мирового пространства и времени, так что ни масса, ни пространство, ни время не отделимы одно от другого и третьего, ни от одной из своих трехгранных сущностей. Их объединяющая фундаментальная взаимосвязь,

150

их своеобразное родство, единство их общей природы качественно проявляется уже в СТО, что, кстати, до нас не отметил пока никто из интерпретаторов СТО. Эйнштейн доказал их физическую взаимосвязь математически, т. е. количественно, в общей теории относительности. Концептуальные положения этой теории будут рассмотрены подробно в п. 4.2, а ее космологические и космогонические следствия и структура Вселенной — в главе 6.



Основной, фундаментальный смысл СТО (как его определяет отечественный академик Анатолий Логунов) состоит в том, что все явления (физические, химические, биологические и пр.) протекают в четырехмерном пространстве-времени, геометрия которого псевдоевклидова. Псевдоевклидовой принято часто называть геометрию Минковского, в которой квадрат расстояния между двумя мировыми точками (он называется интервал) на какой-либо плоскости, например, с координатами ct и х, определяется не суммой их квадратов, как в геометрии Евклида, а их разностью. В дополнение существующих неевклидовых геометрий Лобачевского и Римана (о них читайте в п. 4.2), геометрия Минковского стала еще одной, вновь созданной человеческим гением геометрией, которую физики стали использовать для познания явлений; и структуры природы.

Ценность и фундаментальность специальной теории относительности заключается в неограниченно глубоком влиянии СТО на физическое мировоззрение. В дальнейшем приведенные в соответствие со специальной теорией относительности физические теории стали называться релятивистскими. Например, есть классическая механика движущихся и покоящихся тел, и есть релятивистская механика этих тел, нерелятивистская и релятивистская квантовая механика и т. д.

151

Резюме

Специальная теория относительности Эйнштейна внесла революционные изменения в ряд фундаментальных понятий прежней классической физики: пространства, времени, размера (протяженности) тел, массы. Оказалось, что время не является абсолютной величиной, оно зависит от системы отсчета, более того, пространственные координаты неразрывно связаны со временем, образуя пространственно-временное многообразие. Как показал Минковский, геометрия этого пространства-времени очень похожа на евклидову, но, в силу различия знаков перед квадратами пространственных координат и времени в выражении — аналоге теоремы Пифагора, эта геометрия называется неевклидовой. Продольные размеры движущегося тела всегда меньше покоящегося. Движущиеся часы идут медленнее покоящихся часов. События, одновременные в одной системе отсчета, никогда не будут одновременными в любой другой системе. Одновременность — понятие относительное. Масса движущегося тела всегда больше массы покоя.



4.2. Поле всемирного тяготения, гравитационное

взаимодействие и постулаты общей теории

относительности Эйнштейна - теории пространства,

времени, материи, тяготения и движения

О движении планет и тяготении. Следующая ветвь физического естествознания, приведшая к формированию новых идей неклассической рациональности — теория тяготения, получившая первоначальное развитие в работах самого Ньютона, основателя классической рациональности. Одно из наиважнейших физических взаимодействий — тяготение, оказывается напрямую связано с тайнами «звездного неба», которые пытливый человеческий ум

152


хотел разгадать с древних времен. «Небеса» — Вселенная, ее структура, ее целостное мироздание, космос как общность всего мира — вот постоянная забота творческого человека. Вспомним первые модели мира (см. главу 2). Не повторяя уже сказанного, отметим, что согласно мифологическим представлениям разных народов, например, древних египтян, Вселенная имеет вид большой долины, вытянутой с севера на юг, а в центре ее находится Египет. Византийский философ Козьма Индикоплевст (Индикоп-лов) в «Христианской топографии», созданной в 535 г. и получившей распротранение в Древней Руси, писал, что Вселенная представляет собой «ящик», небесный свод которого поддерживается четырьмя стенами, а внутри, со всех сторон окруженная океаном, находится Земля с огромной горой. Хорошо известно, что один из самых выдающихся древнегреческих мыслителей Гераклит Эфесский еще в V в. до н. э. провидчески полагал иначе: «Мир, единый из всего, не создан никем из богов и никем из людей, а был, есть и будет вечно живым огнем, закономерно воспламеняющимся и закономерно угасающим...» Примеры мифов и догадок разных школ и эпох можно множить и множить.

Первую математическую систему (теорию) строения мира — Вселенной, объясняющую движение планет (звезды казались неподвижными), как уже упоминалось в п. 2.1, создал греческий астроном, математик и философ Евдокс Книдский (400-347 гг. до н. э.). Уместно также напомнить, что представление о равномерном круговом движении небесных тел (планет), самом совершенном из всех возможных движений, как тогда считалось, поддерживали величайшие мыслители античности Платон и Аристотель. Почти две тысячи лет, со II в. н. э., в античной и средневековой науке просуществовала геоцен-

153

трическая модель мира Птолемея, основанная на идеях Евдокса, Каллипа, Платона, Аристотеля, Эратосфена, Аполлония Пергского и Гиппарха. Но два ключевых концептуальных положения этой картины были ошибочными — первое, Евдокса, что Земля занимает центральное положение среди известных небесных тел, и второе, Аристотеля, о том, что тела свободно падают тем быстрее, чем больше их вес. О том, что причина этому явлению -тяготение, никто тогда из мыслителей не знал, не говорил и так не думал. Первое положение основывалось на предубеждении об исключительном положении Земли в мироздании, второе — на убеждении в непререкаемую правоту Аристотеля; каждое положение казалось незыблемым, но по прошествии многих веков, они были все-таки опровергнуты, что лишний раз подтверждает тезис Карла Поп-пера о прогрессе науки в результате исключения фальшивых гипотез. В ошибочности идеи Аристотеля о характере падения тел первым аргументированно стал сомневаться грек Иоанн Филопон из Александрии в VI в., позднее — англичанин Томас Брадвардин (ок. 1290-1349) из Оксфорда, француз Жан Буридан (ок. 1300-1360). Окончательно эту идею опроверг Галилей, осуществив первый в истории науки эксперимент, наблюдая падение различных тел с Пизанской башни.

Положение же о геоцентирической модели птолемеевой картины мироздания было опровергнуто лишь Николаем Коперником в XVI веке. В его книге «Об обращениях небесных сфер» (1543 г.) была изложена новая система мира, которая в дальнейшем получила название коперни-ковой или гелиоцентрической. Солнце («центральный огонь» в пифагорейской и др. идеологиях) в этой модели заняло центральное положение среди известных планет, законы движения которых были несколько позднее, в

154

начале XVII в., открыты Иоганном Кеплером на основе обработки крупных массивов эмпирических наблюдений астрономов за предшествующие века, среди которых особое место занимали астрономические наблюдения датского астронома Тихо де Браге за планетой Марс. Природа движения планет, да и всех других небесных тел, состояла в тяготении всех масс друг к другу, как это впервые показал Исаак Ньютон. Ньютонов постулат тяготения состоял в прямой пропорциональности силы тяготения величинам тяготеющих масс, т. е. произведению масс, и обратной квадратичной пропорциональности расстояния между ними. Закону этому самим Ньютоном была придана всемировая общность, в результате чего он получил название закона всемирного тяготения. Это один из самых известных людям всемирных законов природы (такую же беспрецедентную известность имеет закон взаимодействующих электрических зарядов Шарля Кулона). Вместе с тем так в естествознание впервые проникло представление о взаимодействии, порождающем или даже заменяющим силу, представление о тяготении. Это взаимодействие давно принято называть гравитационным, и, как мы знаем сейчас, оно наислабейшее из всех известных на сегодня взаимодействий, но, не в пример другим, имеет неограниченный радиус действия и, как оказалось, по природе, самое сложное из них.



Ньютоновское тяготение поистине универсально (от лат. universum — «мир как целое», «все сущее», Вселенная и universalis — общий, всеобщий). Оно положило конец взглядам древних греков и идеям средневековья о принципиальном отличии законов природы на Земле и на небе. Но непонятой и непонятной оставалась природа самого тяготения, действующего через пустоту. Это отчетливо понимал и сам Ньютон. В связи с этим почти всегда цитй-

155


I

руют часть следующего отрывка из письма Ньютона от 25 февраля 1693 г. д-ру Бентли: «Непостижимо, — пишет Ньютон, — чтобы неодушевленная, грубая материя могла без посредства чего-либо нематериального действовать и влиять на другую материю без взаимного соприкосновения, как это должно бы происходить, если бы тяготение в смысле Эпикура было существенным и врожденным в материи. Предполагать, что тяготение является существенным, неразрывным и врожденным свойством материи, так что тело может действовать на другое на любом расстоянии в пустом пространстве, без посредства чего-либо передавая действие и силу, это, по-моему, такой абсурд, который немыслим ни для кого, умеющего достаточно разбираться в философских предметах. Тяготение должно вызываться деятелем, постоянно действующим по определенным законам. Является ли, однако, этот деятель материальным или нематериальным, решать это я представил моим читателям».

В этом состояло и состоит своеобразное завещание Ньютона и своим современникам и последующим поколениям потомков, в данном случае нам. Пока мы эту задачу в полной мере не решили, но определенные достижения, благодаря великим математикам Николаю Лобачевскому (1793-1860), Бернхарду Риману (1826-1886) и физику Альберту Эйнштейну, имеем.



О неевклидовых геометриях Лобачевского и Римана. Во все предыдущие века математики и физики углубленно размышляли над проблемой геометрии физического пространства и связи его с природой физических явлений. На протяжении более чем двух тысяч лет в науке, прежде всего в математике, господствовала геометрия Евклида (? ок. 330 - ? ок. 272), и, одновременно, она же первая теория физического пространства. Но одна из ак-

156


сиом геометрии Евклида — аксиома о параллельных прямых, она же трактуется также как V (пятый) постулат Евклида, беспокоила многих математиков своей, в отличие от других аксиом, сложностью формулировки.

Сам Евклид Александрийский, живший и творивший в царствование Птолемеев I и II, туманно сформулировал этот постулат: «Если прямая, падающая на две прямые, образует внутренние и по одну стороны углы меньше двух прямых, то продолженные неограниченно эти две прямые встретятся с той стороны, где углы меньше двух прямых». Несколько позднее в передаче античного философа Про-кла этот постулат звучал определеннее: «Если прямая пересекает одну из двух параллельных прямых, то она пересекает и вторую прямую», но математик Дж. Плейфер (1748-1819), выразил постулат еще проще, придав ему знаменитый школьный вариант: «Через данную точку можно провести лишь одну параллельную прямую к данной прямой».

Начиная с античных времен, многие математики делали тщетные попытки доказать или опровергнуть аксиому о параллельных прямых. Наиболее выдающимся среди математиков, размышлявшим над этой проблемой, был Карл Фридрих Гаусс (1777-1855). В 1813 году Гаусс разрабатывал свой вариант неевклидовой геометрии, но так и не опубликовал ни одной работы, связанной с разрешением этой проблемы, хотя, как отмечают историки математики, ответ он знал, но парадоксальностью этого ответа боялся подорвать свой авторитет великого математика. Слава создателя неевклидовой геометрии принадлежит великому русскому математику Николаю Лобачевскому. Венгерский математик Янош Больяи (1802-1860) разработал свои идеи по неевклидовой геометрии независимо от Лобачевского и несколько позднее.

157


Лобачевский первым доказал в 1826 г., что аксиома Евклида о параллельных прямых не может быть непротиворечиво согласована с остальными аксиомами евклидовой геометрии, так называемыми аксиомами сочетания, порядка, движения и непрерывности.

Отвергнув аксиому Евклида о параллельных прямых, Лобачевский ввел свою аксиому параллельности, в которой допустил, что через точку, лежащую вне заданной прямой, можно провести не одну, а по крайней мере две (в принципе бесконечное количество) прямых, не пересекающих данную прямую. Это бесконечное множество прямых линий, проходящих через эту точку, ограничено двумя прямыми, которые и считаются параллельными данной прямой. На основе этого допущения Лобачевский построил неевклидовую геометрию, в которой много необычных с точки зрения приверженцев геометрии Евклида выводов. Так, например, математики Ф. Клейн и А. Пуанкаре показали, что за плоскость Лобачевского может быть принята внутренность круга, а за пространство -внутренность шара, тогда как еще несколько раньше, в 1876 г., итальянский математик Э. Бельтрами показал, что геометрии Лобачевского соответствует псевдосфера. Прямыми, согласно Пуанкаре, в этих моделях считаются дуги окружностей, перпендикулярные окружности данного круга. Модель Пуанкаре замечательна тем, что в ней углы Лобачевского изображаются обычными углами. Аналитическое определение геометрии Лобачевского состоит в том, что это есть геометрия пространства постоянной отрицательной кривизны (типа поверхности седла, устанавливаемого на круп лошади). Как следствие этого, сумма углов треугольника в геометрии Лобачевского всегда меньше 180° и стремится к 180° с уменьшением площади треугольника (т. е. сумма углов треугольника в гео-

158

... .. . ',,. .- ..-,■ ..,...'.... • .-,.



метрии Лобачевского пропорциональна площади треугольника!). В этой геометрии нет подобных и неконгруэнтных (неравных) треугольников; треугольники равны, если их углы равны, и т. д.

Образ пространства Лобачевского можно условно выразить, представив себе гору неограниченной высоты с идеальными склонами по всей долготе и с гладкой вершиной. С этой вершины тело может соскользнуть вниз по бесконечному числу путей, и ни один из этих путей не пересечется, так что мы имеем в этом случае бесконечное число параллельных (непересекающихся) линий движения.

Одно из важнейших следствий неевклидовой геометрии Лобачевского состоит также в том, что она способна описывать свойства физического пространства ничуть не в меньшей, если не в большей мере, и, возможно, даже более точно, чем евклидова геометрия. Например, много позднее в теории тяготения было показано, что если считать распределение масс во Вселенной равномерным, то физическое пространство такой Вселенной имеет геометрию Лобачевского, Необходимость и достаточность евклидовой геометрии как геометрии физического пространства ниоткуда не следует и никем никогда не была доказана; истинность той или иной геометрии может быть установлена только опытным путем (это ясно понимал сам Лобачевский, стремясь найти эмпирические основания своей геометрии).

Проблема выбора геометрии, наиболее соответствующей реальному физическому пространетву, исследовалась в дальнейшем, уже после Лобачевского, самым великим из учеников Гаусса, Бернхардом Риманом. Риман первым поставил вопрос: что нам достоверно известно о пространстве? Одна из целей Римана состояла в доказательстве того, что аксиомы Евклида являются эмпирическими, а не оче-

159


видными истинами. Риман избрал аналитический подход, поскольку геометрические доказательства не свободны от' чувственного опыта, «здравого смысла», способного привести к ошибочным заключениям.

Риман, в результате продолжительных поисков адекватного описания свойств физического пространства, пришел к мысли, что описание пространства должно быть локальным (от лат. localis местный), ибо свойства пространства могут изменяться от точки к точке (от места к месту). Квадрат расстояния ds между двумя бесконечно-близкими точками в пространстве (в котором введена система координат x1, х2, х3) может быть представлен в виде некоторой двойной суммы по индексам i и к = 1, 2, 3:



где — так называемый метрический тензор, по сути, это некоторая квадратная таблица, ее называют матрица, состоящая в данном случае из 9 = 3 х 3 компонентов (элементов), каждый из которых есть определенная функция пространственных координат x1 х2, х3.

Таким образом, компоненты метрического тензора характеризуют локальные (местные) свойства пространства. В принципе, вышеприведенная формула есть не что иное, как обобщение на трехмерный случай известной всем теоремы Пифагора, справедливой в своей знакомой форме в евклидовой геометрии в виде:В этом частном случае компоненты матрицы метрического тензора равны 0 и 1. Единицы расположены на диагонали матрицы (число этих компонентов матрицы — 3), 0 расположены вне диагонали, и число их равно 6.

В любой геометрии существенное положение занимает вопрос о прямых или кратчайших линиях, соединяющих

160

какие-либо две точки пространства. Так вот, в римановой геометрии, являющейся в простейшем случае геометрией двумерной сферы в трехмерном евклидовом пространстве, с отождествленными диаметрально противоположными точками, прямыми являются большие круги сферы. В результате любые две прямые пересекаются, плоскость не разделяет пространства, само пространство имеет положительную постоянную кривизну (у Лобачевского — постоянную отрицательную) и т. д.



Риман высказал гениальное предположение, что свойства физического пространства должны зависеть от происходящих в нем физических явлений. В дальнейшем эту идею Римана поддержал ирландский математик Уильям Клиффорд (1854-1879). Клиффорд высказал частное предположение, что гравитационные эффекты, возможно, обусловлены кривизной пространства. Гипотезы Римана и Клиффорда дождались своего часа только в XX веке, с появлением общей теории относительности Эйнштейна. Что же предопределило, в конечном итоге, необходимость в новой теории пространства и тяготения?

Принцип эквивалентности Эйнштейна. 10 лет упорной работы (с 1905 по 1915 гг.) понадобилось Эйнштейну, чтобы появилось одно из самых выдающихся научных творений человечества — общая теория относительности (ОТО) или теория тяготения Эйнштейна, которая связала тяготение и массу (как физические явления) с геометрией пространства и времени, обусловила их совместное сосуществование.

Краеугольный камень теории был заложен в 1907 г., когда Эйнштейн сформулировал принцип эквивалентности инертной и тяготеющей масс. Принцип этот есть дальнейшее современное развитие утверждения Галилея (ничто в науке не делается без предшественников!) о том,


1   ...   7   8   9   10   11   12   13   14   ...   36


База даних захищена авторським правом ©mediku.com.ua 2016
звернутися до адміністрації

    Головна сторінка